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The Generation of Antigravity
oy

H. Beck

1. Introduction

The concept of antigravity refers to a force acting in a direction oppo—
site to that of normal gravitation. The latter causes the earth to attract
all objects towards its center, while objects under the influence of anti—

gravity are repelled by the earth and either move upwards or experi—
ence a reduction in weight.

It has often been conjectured that UFOs might use an antigravitational
drive when manoeuvring near the earth’s surface without any visible
means of propulsion. One indication supporting this view is the down-—
ward pressure sometimes exerted on objects underneath low—flying
UFOs. Another is the appearance of strong electromagnetic fields in
their vicinity. As will be seen, such fields of necessity accompany the

generation of antigravity.

Apart from its possible utilization by UFOs, antigravity would find
many useful applications here on earth if it could be produced in suf-
ficient strength. The aim of the present study 1s to outline a method
for generating antigravity and to describe the equipment needed for
this. A word of caution at the very outset: The reader should not ex—
pect too much, for the effect turns out to be very small indeed if pro-—

duced by present—day technology.

The calculations to follow are based on a 4—dimensional version of B.
Heim’s 6—dimensional unified field theory (Heim, 1989, 1984). Being 4—

dimensional the theory to be presented can only be approximately cor-
rect. Previous publications on antigravity and related topics include ar-
ticles by B. Heim (1959) and 1. von Ludwiger (1976, 1979, 1983). Re—
ports on observed gravitational effects due to UFOs are described by

A. Schneider (1976, 1981).

The theory starts out from a set of relations very similar to Maxwell’s
equations, describing the interrelations between electric, magnetic, and
gravitational fields, including the mesofield. The mesofield only acts on
moving masses and bears about the same relation to the gravitational

field as the magnetic field does to the electric field.
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Two coupled equations of the set describe the phenomenon of anti—
gravity. In Section 2 the first of these is solved separately because the
resulting solution is simple and tractable, allowing modifications to be
made with relative ease. The solution of both coupled equations 1s de-
rived in Section 3. Section 4 contains a brief discussion of the anti—
gravitational field and of the electromagnetic fields accompanying anti-—
gravity. In order to keep mathematics in the main text to0 a minimum
full mathematical details are presented in Appendices A and B.

The antigravitational force turns out to be of measurable proportions

only if the mass of the entire earth is utilized for repelling the device
that generates the antigravity field. For this reason the theory to follow

will be applied from the outset to methods of flight propulsion.
2. Dipole Solution of the First Equation
2.1. The Basic Equation

The equation to be solved in this section 1s

JB
VXI = -b=—, 1
3 (1)
where
I" = gravitational field
B = magnetic field

b = coupling constant.

The symbols Vx and d/dt denote the mathematical operators curl and
partial time derivative, respectively.

Reading from right to left, Eq. (1) states that a space— and time—
dependent magnetic field B induces a space— and time—dependent
gravitational field I' (gamma). As 1s well known, it also induces an
electric field, but the electric field has been omitted from Eqg. (1) be-—
cause 1t acts on electrical charges only. In the absence of charges it is
legitimate to drop the electric field from the equations.

The gravitational field I' acts on masses such that the product mT
represents a real force if m denotes a mass. A force always acts in
some direction, implying that I" is a directed quantity. This fact is ex—
pressed by the bold printing of I'. The same is true with regard to the



- 243 -

magnetic field B.

In Eq. (1) the direction of I' 1s seen to depend on that of B. Since the
latter is to be produced artificially, care must be taken to ensure a
direction of B inducing a repulsive gravitational field I', and not an
attractive one. The fact that this is possible demonstrates the great ad—
vantage of I' over ordinary gravity, whose direction is always attrac-
tive and cannot be manipulated in any way whatsoever. Gravitational
and antigravitational forces merely differ in the plus— or minus-signs in
front of them. For this reason the term “gravitational” in this report
will often be used collectively to denote both types of forces.

Of essential importance with regard to the expected strength of anti-
gravity is the magnitude of b in Eq. (1). Its value is given by

=

€4 ~11
b= |5z = 8625x107" coul/kg , (2)

g, = vacuum permittivity (€, = 8.854 x 107'* farad/m)
a = permittivity of space to gravity *) (o0 =1.19 x 10° szkg/m3) :

b is a coupling constant between the magnetic field B and the gravi-
tational field I'. Obviously, it 1s extremely small, so that even a
sttong B will induce a vanishingly small gravitational field. However,
this is no cause for concern, because the same occurs in ordinary
gravity, where a mass m creates an exceedingly weak gravitational
field around itself, to which it is coupled by the small gravitational

constant Yy (gamma) (y=6.67 X 1071 m?/s’kg). vy is seen to be somewhat
smaller than b. Nevertheless, when the weak gravitational field of m
interacts with the huge mass of the earth, the result is an attractive
force — the weight of m — which 1s not small by any means. Evident-
ly, the enormous mass of the earth more than compensates for the
weak gravitational field of m. By analogy, it may be argued that the
weak T'—field of Eq. (1), interacting with the earth, should result in a
relatively strong antigravitational force roughly equal in magnitude to
that of ordinary gravity. Unfortunately, this hypothesis is not supported
by the facts for reasons that will become clear later on.

*) This name was suggested by W.K. Allan
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Fig. 1. Two possible configurations for the generation of an antigravitational
field T.

2.2. Equipment Needed for the Production of Antigravity

Equation (1) can be solved after deciding on a magnetic field B suit-

able for generating antigravity. B is produced by an alternating current,
since it has to be time—dependent. The field lines of B are known to

be perpendicular to the current, while the field lines of I are perpen—
dicular to those of B. Two possible arrangements meeting all necessary
requirements are shown schematically in Fig. 1.

In Fig. la a rectangular current loop composed of many wires 1S con-—
nected to an alternating current source. The wires pass through a cyl-
inder made of highly permeable material, such as iron. The current in—



Earth

Fig. 2. Antigravitational field lines relative to the earth. I" = vertical compo-
nent of the antigravitational field.

duces a strong magnetic field B, whose field lines encircle the vertical
portions of the loops in a plane perpendicular to them. The permeable
material serves to increase the field strength of B. A strong B is
needed because the antigravitational force 1s directly proportional to it.

The curved field lines, belonging to I, in turn are induced by B. The
gravitational force acts on any mass iIn the direction of the arrows

tangentially to the field lines.
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Fig. 3. A tilted magnet and its antigravitational field relative to the earth.

A second arrangement is shown in Fig 1b, where many windings sur—
round a toroidal core of highly permeable material *). The magnetic
field lines are circles inside the torus, while the field lines of I at
some distance from the magnet are the same as in Fig. la. In the
configuration of Fig. la end effects may cause a slight modification of
the gravitational field relative to the field of Fig. 1b.

Calculated gravitational field lines based on the solution of Eq. (1) are
shown in Fig. 2 in relation to the earth. They penetrate into the earth’s

*) The author is indebted to A. Miiller of MUFON-CES for suggesting
the use of a toroidal magnet. See also v. Ludwiger (1979).
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interior, acting on its mass at every point in the direction of the ar—
rows. A visual inspection of Fig. 2 leads to the conclusion that the
field pushes the earth away from the magnet in a downward direction.
Since action equals reaction, the earth pushes the magnet with the
same force in the upward direction. This 1s the desired antigravitational
force acting on the magnet and on the entire construction attached to

1t.

Only the vertical component of the field, denoted by I’ in Fig. 2,
contributes to the upward thrust. The horizontal components, pointing in
opposite directions, cancel each other due to symmetry. This symmetry
is disturbed if the magnet is tilted as in Fig. 3. The average force ex—
erted on the earth by the arrows in the figure 1s downward and mainly
to the left. In turn, the earth pushes the magnet up and to the right.

2.3. The Vertical Field Component in Dipole Approximation

An exact solution of Eq. (1) for the gravitational field I' induced by
the magnetic fields of Figs. 1la or 1b may be derived in the form of
an infinite series of terms. If the height of the craft above the earth’s
surface is large compared to the dimensions of the magnet, which usu-
ally is the case, the first two terms of the series express the solution
with sufficient accuracy for our purpose. The gravitational field result—
ing from this approximation is known as a dipole field.

The vertical component of the gravitational dipole field is given by the
expression

by 3cos?® — 1, M dI
= . T —
Fz 16?1.'2 r Mo dt )

where r and O are the coordinates of the point at which I, 1s evalu-
ated, as shown in Fig. 4, V is the volume of the magnet, W/K, 1s the
relative permeability of its iron core, W, is the permeability of free

space (M, =1.257 X 10~ henry/m), I is the current producing the mag-

netic field, and dI/dt is the time derivative of I. Note the 1/r’—depend—

ence of I',. Ordinary gravity depends on 1/r°, ie. it diminishes more
slowly and remains stronger throughout the earth’s volume. This leads
us to suspect that antigravity may be a weaker force than normal

gravity.
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Fig. 4. Coordinate system for evaluating the vertical component of the gravi—
tational dipole field, I',.

2.4, The Gravitational Force

The last step in the calculation consists in evaluating the actual force
acting on the magnet. To this end I', of Eq. (3) 1s multlplled by the

average density of the earth, p_ (rho) (pm-S 500 kg/m) and inte—
grated over the earth’s volume (an integration is a mathematical sum-
mation over many small elements). The force F resulting from this is

3
R vy Hdl 4)

F=-316x10"
(R + h)’ P«U de ’

where R is the earth’s radius (R=6.378 x10°m), and h is the height
of the magnet above the earth’s surface (cf. Fig. 4).

The main result of integration is the quotient R’/ (R +h)® in Eq. (4). Its
magnitude 1s nearly equal to unity, because in general h is much
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smaller than R. When calculating the normal weight of an object a
similar factor appears in the result, but there the denominator equals

(R+h)2 instead of (R+h)3. Thus, 1f R 1s measured in meters, the quo—
tient in Eq. (4) is about 6 million times smaller than the corresponding
factor in ordinary gravity. Equation (4) confirms our suspicion that ar—
tificial antigravity is a much weaker force than gravity. Clearly, a
fairly strong antigravitational force F can be attained only if the re-
maining quantities in Eq. (4) are made as large as reasonably possible.

2.5. Elimination of the Time Dependence

There now arises a new problem. The current I must be alternating.
The simplest alternating current 1s sinusoidal and corresponds to the

expression,

I = Io S1n Wt

(5)

0= 21t .

Here 1, is the maximum current, t is the time, ® (omega) is the
angular frequency, and f is the frequency of oscillations. As an ex—
ample, if f=100Hz (1 Hz (Hertz) =1 oscillation per second) then ® =
200 ©t = 628 radians/second. According to Eq. (4) the force F is propor-
tional to dI/dt which, with I given by Eq. (5), 1s

dl Iyocosmt . (6)

dt

When this is substituted into Eq. (4) the extra ® in Eq. (6) increases F
substantially. One certainly should be careful not to lose ® again in
subsequent mathematical operations. In our example f is equal to 100
Hz, but frequencies in the megahertz (MHz) range can easily be at-
tained (ignoring self—inductance). This will result in very large values
for ®, leading to an enormous Increase in the antigravitational force F.

Unfortunately, this incease is only an illusion, because coswt in Eq. (6)
alternates between positive and negative values as time progresses, and
so does F. If a negative value refers to antigravity, then a positive F
is a force in the opposite direction, i.e. gravitational or attractive. As a
result, F constantly alternates between an attractive and a repulsive
force, whose average value is exactly zero. No sustained flight is pos—

sible under those circumstances.

A physical argument shows that no reasonable current can ever lead to
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acceptable flight conditions: The upward velocity which F 1s supposed
to impart to the craft is the difference between two velocities: The first
is the integral of F/m over time (m = mass of the craft), and the sec-—
ond is the velocity of free fall, gt (g = acceleration due to grav—
ity = 10 m/s®, t=time in seconds). If the net velocity is to be upwards,
then the integral over F/m must be greater than gt. As the integral
over F is proportional to I, this implies that the current should at least
be proportional to t. But such a requirement 1s a physical 1mpossibility,
for time increases indefinitely, whereas a current may rise for a while,
but eventually it has to come down agam if no damage 1s to be done

to the apparatus.

Fig. 5. Rotating magnet with its gravitational field. ® = angular frequency of
rotation.



- 251 -

Evidently, it is impossible In principle to support sustained flight with
the simple arrangement discussed so far. Brief flights of the craft may
be possible during the antigravitational phase of F, followed by a hard
landing as F turns gravitational, much to the passengers’ discomfort.

Moreover, the important factor ® in Eq. (6) 1s lost again when inte—
grating over F.

Only one solution to the problem has come to mind so far, but hope—
fully there are others, and perhaps more elegant ones. The solution 1is
to let the magnet rotate about a horizontal axis, together with its grav—
itational field, as shown in Fig. 35 for the cylinder of Fig. la. The ro—
tational frequency must be the same as the current frequency, with the
magnet rotating as cos ot, i.e. 90° ahead of the sine—current.

As a result of rotation, an additional factor coswt appears in Egs. (3)
and (4). Together with an wcoswt already contributed by dl/dt (cf. Eq.

(6)) both the field and the force F now become proportional to cos’mt,

Fz, F = ®COoS Wt . (7)

The square of a number never changes sign, making F always anti—
gravitational. When this F 1s integrated over time, ® is not lost, and in
addition the integral contains a term proportional to t. This is precisely
the time dependence needed for overcoming the velocity of free fall.

A second term resulting from the integration is proportional to
(1/®)sin2mt. This term oscillates with twice the current frequency, but
its effect is suppressed by the factor 1/®. The angular frequency  is
restricted to relatively low values, because it has to match the rotation—
al frequency of the magnet. As a resulit, the relatively slow oscillations
may give rise to an uncomfortable vibration of the whole craft.

Another undesirable effect produced by the rotating magnet is a gyro—
scopic force affecting the craft’s manoeuvrability by opposing any
change in its direction of flight.

Fortunately, both problems can be solved by a single trick: Instead of
using just a single magnet one uses two of them, rotating about the
same axis but in opposite directions, as shown in Fig. 6. This imme-
diately eliminates the gyroscope effect. Both magnets rotate with equal
angular frequency @, which must be the same as the current frequency.
The second magnet is required to have a definite phase relation with
respect to the first: Its axis must be horizontal when the axis of the
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Fig. 6. Two counterrotating magnets.

first magnet is vertical and vertical when the first magnet is horizontal.
Furthermore, a cosine current has to flow through the second magnet.
As a result of counterrotation, an wcos’®Wt—term is introduced into the

field of the first magnet as before, and an ® sin’@t—term appears in
the field of the second. When the two fields are added together the re—

sulting force is proportional to
F = co(sin?‘(x)t + coszu)t) = ® , (8)
because the sum of the squares in Eq. (8) is always equal to unity.

The total antigravitational force now becomes,

3
F=-316x104—R __vEpg 9)
(R + h)> Ho
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This equation represents the ideal situation, for now F is antigravita—
tional due to the minus—sign in front and entirely independent of time.
Being constant, F is ideally suited for counteracting the constant weight
of the craft. V in this and all subsequent formulas is the volume of

only one of the two counterrotating magnets.

3. The Wave Equation

The solution of Eq. (1), represented by Eq. (9), turns out to be rela—
tively simple. It enables one to investigate a number of schemes for
eliminating the time dependence without too much effort. However, it is
not yet the correct description of antigravity. As will be shown in Sec—
tion 3.2, it is valid for very low frequencies only. Alternatively, it rep—
resents a much more general solution in the limiting case in which the
velocity of light becomes infinite. It is this more general solution which
leads to the correct expression for the antigravitational force.

It will be recalled that mention was made in the Introduction of rwo
equations describing the phenomenon of antigravity. Only one of these
has been solved so far. It expresses the fact that a time—dependent
magnetic field induces time—dependent gravitational and electric fields.
The second equation, which has not yet been solved, states that time-
dependent gravitational and electric fields in turn induce a time-—de-
pendent magnetic field. The two equations are coupled, since the same
fields appear in both. It is, therefore, not permissible to solve just one

of them and to ignore the other.

The electric field induced in the first equation and the magnetic field
induced in the second indicate that antigravitation is always accompa-—
nied by electromagnetic fields. The electric field turns out to be very
strong and should result in strong electromagnetic disturbances near the

rotating magnets.

The procedure for solving the two equations simultaneously again starts
out by omitting the electric field for the same reason as before. Next,
the magnetic field is eliminated, leaving a single relation involving the
gravitational field alone. It is this equation which really must be solved
and it differs substantially from Eq. (1). It turns out to be a wave e-—
quation, indicating that the gravitational field propagates away from the
magnet in the form of a wave traveling with the speed of light.

The wave nature of the field has a profound effect on the gravitational

force, as illustrated schematically in Fig. 7. The arrows along the ver—
tical in Fig. 7 represent the vertical field component. The dotted line in
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Fig. 7. Schematic view showing the wave nature of the gravitational field.

the form of a wave is merely intended as an optical aid, the actual
wave being longitudinal (the wavelength in Fig. 7 is arbitrary). The
whole wave pattern flows through the earth with the speed of light.
Figure 7 represents a snapshot taken at the instant the antigravitational
field (arrows pointing down) has a maximum at the position of the
magnet. This fact is indicated by the extra long arrow underneath the

magnet and by the large 1/r—rise in amplitude of the dotted curve. At
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points farther away from the magnet the arrows become shorter be-

cause the field grows weaker due to its 1/r3—dependence, and because
its wave nature reduces it still further. For the sake of clarity, the
1/r3—decrease of the dotted wave is neglected after the initial maximum.
At the first node, where the dotted wave crosses the vertical axis, the
field is zero. Thereafter it changes sign, becoming gravitational and
hence attractive (arrows pointing up). Below the node the field is small
at first, then grows larger and finally goes to zero again at the second
node. This process is repeated throughout the earth and beyond. On the
average, the field becomes weaker and the arrows grow shorter with
increasing distance from the magnet due to the inverse-r dependence.
The decrease is too rapid for the arrows in Fig. 7 to be drawn to

scale.

A second snapshot, taken a fraction of a second later, would reveal a

downward shift of the pattern due to its propagation with the speed of
light, but again gravitational and antigravitational zones would be

present in the earth’s interior.

Evidently, attractive and repulsive regions are always present simulta—
neously, and this is bound to reduce the antigravitational force relative

to its value in Eq. (9). In that equation an antigravitational field was
assumed to exist at every point inside the earth. The wave equation
leads to an approximately similar situation only when the wavelength A
(lambda) is equal to or larger than twice the earth’s diameter. In that
case the first node lies on or below the earth’s circumference on
the bottom of the circle in Fig. 7. For very short wavelengths, on the
other hand, gravitational and antigravitational zones follow each other
at such short intervals that the r—dependence 1s not effective enough for
substantially changing the field strength from one zone to the next. As
a consequence, the two opposing forces in adjacent zones are almost
equally large and nearly cancel each other. The conclusion is that the
antigravitational effect becomes weaker the shorter the wavelength or

the higher the frequency.

3.1. Solution of the Wave Equation

For the purpose of solving the wave equation a sine current is speci—
fied in Eq. (5). The magnet is assumed to be stationary. Only the ver—
tical field component is needed and the equation is solved in dipole

approximation as before. The resulting vertical field component, I',, is
given by
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bUy M 3cos’8 — 1
' = — 0 v T ) COS ¥ — =~ cos(wt — kr) —
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r

o
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It is obvious at a glance that Eq. (10) is much more complicated than
Eq. (3). The new I'_ has 3 terms, and each of them is more compli-
cated than the single term of Eq. (3). Moreover, a new constant, the
wave number k, appears in Eq. (10). Since the speed of light, c, is

very large (c=3x 10°m/s), while © for all reasonable frequencies is
relatively small, k is always a very small constant. The occurrence of
kr in the trigonometric functions of Eq. (10) is responsible for the
wave nature of the field.

The calculations of Section 2 made the implicit assumption that gravi—
tational fields propagate with infinite speed. In the limit when c¢ goes
to infinity and k goes to zero in Eq. (10) the result, therefore, is Eq.
(3) with dl/dt replaced by [ywcoswt (cf. Eq. (6)).

The r—dependence of the three terms in Eq. (10) is interesting. The first

term depends on l/r’, the second on 1/r*, and the third on 1/r. With
increasing r the last two terms decrease much more slowly than the
first and should, therefore, contribute more strongly to antigravity.

However, since they are multiplied by the small quantities k and k*
their net contribution at low frequencies is small. It becomes significant
only at high frequencies.

Since the current varies sinusoidally, I  is a function of time and so is
the force after integration over the earth. With the magnet remaining
stationary, the average force again turns out to be zero, confronting us
with the same problem as before. This time, however, the formulas are
considerably more complicated. It would require a much greater effort
to discover ways and means for eliminating the time dependence if a
working scheme had not been found on the basis of the first, much
simpler solution. In view of its previous success it is natural to try the
method of counterrotating magnets a second time. Luckily enough, the
method works again, causing ot to disappear from most of the terms
in I', and leading to a completely time-independent vertical component
of the antigravitational force. The corresponding expression for I’ 1s

given by Eq. (B41) in Appendix B.
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As a result of counterrotation the traveling waves are transformed into
standing waves. The wave character of the field is retained, with alter—
nating zones of gravitational and antigravitational forces still present in
the earth’s interior. The zones remain stationary, their extent being

governed by the magnitude of k.

Fig. 8. Field lines in the y—z—plane produced by two magnets counterrotating
at a frequency of 13 Hz. The wavelength is 2.30 x 10" m.

The field lines of Figs. 2 and 3 are now no longer correct. At dis—
tances r short compared to half a wavelength the field still retains the
classical dipole shape shown in Fig. 2, but for large r the field lines

change shape completely.

Figure 8 is a plot of the new field lines in a plane passing through
the vertical axis and the axis of rotation (the y-z—plane). The inner
zone, lying within the first circular field line, is essentially repulsive,
i.e. antigravitational, as indicated by the arrows. Note that the region
where the arrows point down 1s much narrower, and the regions where
they point up are much wider, than in Fig. 2. The figure is drawn to
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scale for a wavelength A =2.30 x 10’ m, corresponding to the numerical
example of the following section. The zone between the first circular
field line and the second, partially drawn one, is essentially gravita—
tional but lies mostly outside the earth’s volume.

F
iy

Fig. 9. Schematic view of gravitational field lines in the y—z-plane due to
magnets counterrotating at 75 Hz. The wavelength is 4.0 x 10° m.

Figure 9 is a similar view of the situation when the wavelength is
short. Several zones, each bounded by a circular field line, extend
through the earth’s interior. Gravitational and antigravitational regions
alternate from one annular zone to the next, as indicated by the arrows
along the vertical, although no zone is entirely repulsive or entirely at--

tractive. The dotted curves symbolize a standing wave. Its 1/r3—depend—
ence 1s neglected except for the steep rise near the magnet.
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3.2. The Antigravitational Force

The final step consists, as before, in multiplying I' , Eq. (B41), by the
average density p _ and integrating the product over the earth’s volume.

In the result, D, the earth’s diameter (D =1.2757 x 10’ m), turns out to
be a more useful parameter than the radius R. The integral contains

several terms proportional to D’ , analogous to R’ in Eq. (9), but they
all cancel, leaving terms at most proportional to D”. This results in an
unfortunate loss of a factor D (about 13 million) in the formula for
the antigravitational force. All terms remaining in the result are pro-
portional either to I/k, l/kz, or l/l':3 . It follows that the antigravitational
effect decreases with increasing k or, since k is proportional to ®, with
increasing frequency or decreasing wavelength. This is precisely the ef—

fect predicted on the basis of Fig. 7.

However, the picture is not yet complete, because Eq. (B41) contains
an additional ® in front of the curly brackets. After multiplying
through by it the various terms in the formula for F become constant,
proportional to 1/k, and proportional to 1/k%, respectively. Furthermore,
since w/k =c¢, the velocity of light, ¢, appears in the numerator of F.
The result is a gain of c=3X 10° m/s compared to a loss of D =
1.2757 x 10’ m, leading to a net gain of 23.5 s™!. This may not be
much, but the antigravitational force 1s so weak that every power of

10 counts.

Integration over the earth results in the following expression for F:

F=-3555%x10°V uﬂo I, g(k,h)

(11)

_ 1 _ ; : 4 3
g(k,h) = R+ h)3 { D(D + 2h)[smk: + sink(D + h)] + » [h coskh

_ (D +h)cosk(D +h) ] 5

sinkh — sink(D +h)] } .

The minus—sign in front of the formula for F makes the force anti-
gravitational when g(k,h) is positive.

The dependence of g(k,h) on h 1s so weak up to, say, h= 100 km that
g(k,h) may be regarded as essentially independent of h up to that
height. Its dependence on the wave number k for low frequencies is il-
lustrated in Fig. 10. Both scales in the figure are enlarged by a factor

107. g(k,h) and k are actually of order 107",
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In Fig. 10 positive values of g(k,h) lead to antigravitation, negative
ones to gravitation. When k=0, i.e. at zero frequency, the effect van-—
ishes and F is zero. Very close to k=0 the force has the form of Eq.
(9), which is thus seen to be valid at very low frequencies only. As k
and the frequency increase, g(k,h) reaches a first antigravitational max—
imum at k=2.73x10"m™' when the wavelength A is 2.30x 10’ m or
close to twice the earth’s diameter. At higher frequencies g(k,h) de-
creases rapidly until it is zero again. As k keeps increasing, g(k,h)
changes sign and becomes gravitational, reaching a negative maximum
and then again going to zero at k=7 X 10" m™'. This oscillation contin—
ues indefinitely.

og(k,h)x10’, m™

al
1
:

10 15

5 U \/ \

f Hz
'7" Y T Y J 1 v

10 20 30 40 50 80 70

—rFr[ LE Y I T ¥ T r
10 1.0 0.5

Ax10°7 m

Fig. 10. The function g(k,h), Eq. (11), for h< 100 km plotted against wave
number k, frequency f, and wavelength A.

Except at extremely small values of k the expression in the first set of
square brackets in Eq. (11) dominates the rest of g(k,h) because it is
multiplied by the large factor D(D +h). It 1s composed of two sine—
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functions. The first of these, sinkh, oscillates slowly as a function of k
(or ®) while the second, sink(D + h), oscillates rapidly. g(k,h) thus
consists of a rapidly oscillating function superimposed on a slowly os-—
cillating one, as illustrated in Fig. 11 for h =2'500 km. The dotted line
in the figure represents the slow oscillation. Apart from the first maxi-
mum at k=2.08x 107’ m~!, the antigravitational maxima in the curve
occur at approximately k= 3m/2h, 7m/2h, 11w/2h, etc., or generally at
k=(@4n+3)n/2h, n=0,1,2,... These maxima are higher than the first
maximum by a factor that is weakly dependent on h but in general is

greater than 1.5. Note that the peak waves are almost entirely either in
the gravitational or the antigravitational domain.

7 -1

%(k,h)* 10, m k«3M/2h ke7Tl/72h
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Fig. 11. The function g(k,h), Eq. (11), with h=2°500 km, plotted against
wave number k.

Originally, Eq. (9) led one to believe that F would rise indefinitely

with growing frequency. Actually, as mentioned above, Eq. (9) is only
valid for very low frequencies (or very small values of k) near zero.
At higher frequencies, Eq. (11) is the correct expression for the anti—
gravitational force. It demonstrates the impossibility of increasing F

substantially by increasing the angular frequency ®. A modest increase
by a factor between 1.5 and 2.5 may be achieved relative to the first
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peak by operating at k =3w/2h (0 =3mnc/2h) or at peaks belonging to
still higher frequencies, as shown in Fig. 11, but rotating magnets limit
@ to fairly low values for mechanical reasons. Moreover, at its opti—
mum value of ® = 3nc/2h the antigravitational force is very sensititve
to small deviations of ® from the optimum. When h=2500km, as in
Fig. 11, a deviation of 5% from the optimum ® reduces the force by
a factor 2. The same reduction occurs in the case of h=10km when
® varles by no more than 0.026%. Only the first peak 1s insensitive to
variations in ® and has the further advantage of mechanical stability

due to low rotational speed.

A numerical example will conclude this section. In view of the small-
ness of the gravitational force all factors in Eq. (11) should be made
as large as possible. The values chosen for the example are,

3

V=1m

A ,

— = 100000 (12)
Ho

[, = 600°000 ampere turns .

The value of p/u, is high, but highly permeable materials are avail-
able today. I, is calculated on the basis of 60 amps per wire of 1
square millimeter cross—sectional area and 10000 windings. Due to
saturation effects in the permeable material the high value of p/p, is
not really compatible with the large number of ampere turns, I,. How-
ever, when dealing with the futuristic topic of antigravity one may,
perhaps, be allowed to use values representing an extrapolation into the
future.

Substituting the numbers of Eq. (12) into Eq. (11) gives,
F = —2.13 x 10° g(k,h) . (13)
For g(k,h) it 1s best to choose the first maximum reached at a fre—

quency of 13.03 Hz (cf. Fig. 10). This frequency of rotation is attain-
able even by large magnets. The maximum of the g-function at

h=100m and k=273 x 107" m™, corresponding to a frequency of 13.03
Hz, is (cf. Fig. 10),

Ist maximum: g(k,h) = 8.193x 107" m™ . (14)
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When this figure is substituted into Eq. (13) the final result is,

F = 0.175 Newton (15)

or
F = 17.5 gram-weight . (16)

Thus, the antigravitational force at the first maximum is capable of
lifting a total of 17.5 grams (0.617 oz). The optimum g, reached at

k=4.7133 %102 m~! or f=2.25 MHz, equals 1.254 x 107° m"l, leading
to an optimum antigravitational force of 0.267 Newton or 26.7 grams

(0.942 oz).

4. The Gravitational and Electromagnetic Fields

Underneath the rotating magnets the vertical component of the gravita—
tional field is approximately equal to

-6
I, = 6'73>;10 Newton/kg . (17)
I
If F in Eq. (16) could be increased to, say, 10 metric tons, which may

be regarded as the approximate weight of a small aircraft, this would
mean an increase of both F and I', by a factor of 5.72x10°, leading
to an antigravitational field

I = 3'§5 Newton/kg . (18)
r

The acceleration due to gravity is 10 Newton/kg, so that the field
would increase the weight of any mass at a distance of r=1 meter by

38.5%. An upward acceleration would need a field considerably in ex—
cess of this.

The stability of the vehicle may be a problem because of a possible
tendency to turn upside down under the action of the antigravitational
dipole field. A similar effect has been observed in terrestrially built
flying discs such as the Avro Car, constructed by the Avro—Canada
Co. in the 1950’s. The instability may be eliminated by mounting, say,
3 or 4 small rotating magnets at the comers of a triangle or a square
along the periphery of the craft, controlling the tilt and compensating

any deviation from level flight.

As mentioned in Section 3, a strong electric field attends the induced
gravitational field. With the numerical values of Eq. (12) and f=13.03
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Hz the electric field E underneath the craft has a magnitude approxi—
mately equal to

E = 73;200 Volt/m . (19)

Its direction is everywhere parallel to the gravitational field. For this
reason 1t should be possible to focus a microwave gravitational field
by focussing an electromagnetic microwave field.

If it were possible to increase F by a factor of 5.72x 10° the electric
field would increase by the same factor to

10
E ~ 220%10_ yo1m | (20)
 §

Since 3 million volts/meter suffice to ionize air, such a field would
lead to very strong air ionization, resulting in a brilliant glow under-
neath and perhaps around the craft. E decreases as 1/ for small k
and r, so that the field strength falls below the ionization limit at a
distance of only about 24 m.

The magnetic field outside the core, being proportional to k%, is Insig—
nificant at low frequencies, but at the optimum frequency of 2.25 MHz
its strength at a distance of 1 meter is about 1’000 Gauss. It is induced
by the electro—gravitational fields and falls off as 1/r’. Its direction is
everywhere perpendicular to the electric field.

The mesofield mentioned in the Introduction has never been observed
in nature, perhaps due to its extremely weak interaction with matter.
On the basis of the figures in Eq. (12) it turns out to be relatively
strong, but the force it exerts on any mass is still vanishingly small,

even after multiplication by 5.72 x 10°. In principle, the mesofield could
contribute to antigravity, but the mesofield generated by the magnets of
Figs. 1 and 6 does not have the right orientation.

5. Conclusions

The theory outlined in the present study has demonstrated the feasi—
bility of generating antigravity by means of time—dependent magnetic
fields, albeit of very modest strength. Basically, this was to be expect—
ed, since otherwise the effect would have been detected long ago.

The smallness of induced antigravitation may be disappointing, but it is



- 265 -

due in large measure to purely technological inadequacies, which some
day may be overcome. New concepts could be instrumental in bringing
sufficiently strong antigravitation within reach of a future technology.
Electronic generation of standing antigravitational waves and the elimi—
nation of all iron cores certainly would be steps in that direction. The
existence of a mathematical theory at any rate helps to eliminate

guesswork and provides a basis for testing new ideas.

Some phenomena predicted by the theory correspond to effects actually
observed in the vicinity of UFOs, assuming them capable of generating
antigravitational fields strong enough to lift several tons. An antigravi-
tional field is repulsive and pushes down on any object underneath the
UFO. The field will bend down trees, bushes, and grasses as a UFO
passes over them at low altitude. Similarly, when flying over a lake
the field will cause a depression in the surface of the water. The ef-

fects have a short range due to the field’s 1/r3—dependence and are not
noticeable some distance away from the UFO. In contrast, the anti—

gravitational force lifting the UFQ has a very long range.

Of particular significance is the generation of an electric field together
with the antigravitational field. If the latter 1s strong enough to lift a
UFO. then the electric field is strong enough to 1onize the surrounding
air, causing a brilliant glow in the region where the field exceeds the
ionization limit. Radio and television interference, dark rings around
UFOs viewed through polaroid sunglasses (Roush 1968), and the prick—
ly feeling sometimes reported by observers standing close to a UFO are
further indications of the presence of a strong electric field.

When a UFO and its fields move rapidly past a stationary observer
additional effects appear due to the relativistic invariance of the basic
equations. The most significant of these 1s a magnetic pulse produced
by the passing electric field. It the latter is given by Eq. (20), then the
magnetic pulse has a peak strength of v E/c? (v = velocity of the UFO).
This is not very much but still stronger than the magnetic field induced

directly by the slowly rotating magnets.

As shown in Appendix B, the gravitational and electric fields generated
by two counterrotating magnets have time—dependent as well as time-
independent components, resulting from forming the sums and differ—
ences, mt+ ot, of the rotational frequencies multiplied by the time. The
time—dependent terms, therefore, oscillate with twice the frequency of
rotation, or 2mt (see also Section 2.5). The most useful frequency was
shown to be 13 Hz, leading to an oscillation of 26 Hz for the time—de-

pendent field components, with a possible first harmonic at 39 Hz.
Frequencies of 27 and 37 Hz have actually been observed (Schneider
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1981, p.207).

The well-known vehicle interference effects caused by UFOs might be
due to electric leakage fields penetrating into the space under the hood,
which never is a perfect Faraday cage. Hood and chassis do not pro—
vide shielding against the gravitational field which, once inside, would
induce very strong electric fields. Actually, though, the suppression of
electric fields inside a Faraday cage probably goes hand in hand with
a corresponding reduction of the gravitational field.

The magnetic field induced by the electro—gravitational fields at low
rotational speeds is too weak to cause any measurable effects. The
magnetic pulse induced relativistically by the electric field of a passing
UFO might affect a compass needle but would hardly have any more
significant consequences. '

Clearly, there exists a considerable discrepancy between the strength of
antigravitation available today and the requirement of lifting several
tons. The figures of Eq. (12) are, after all, very optimistic. In reality,
they may be too large by a factor of 10 or even 100. This would
mean the need for increasing antigravitational forces by some 6 to 7
orders of magnitude above today’s capabilities. No doubt this is a for—
midable task, but much room still remains for further development and
improvement within the framework of the theories presented In this re—
port or by Heim (1959).

The new effects predicted by the theory — antigravity i1s only one of
them - are near the limit of measurability, so that experimental verifi—-
cation is difficult to accomplish. Some experiments have been suggested
(Heim 1985, Awuerbach 1983, 1985, Harasim et al. 1985), but so far
none of them have been carried out. Perhaps the prospect of achieving
practical results might serve as an Inducement for performing an ex—
periment in the not too distant future.
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Appendix A

In this appendix a set of equations i1s derived describing a 4—dimen—
sional unified field theory of gravitation and electromagnetism. The
derivation is based entirely on Heim’s concepts as presented in the first
volume of "Elementarstrukturen der Materie” (Heim 1989) and in a
number of articles by I. von Ludwiger (1976, 1981). In his writings,
Heim never presents either an explicit derivation of the equations or
the equations themselves. Hence the need for deriving them in this ap-
pendix. Various remarks in Heim’s book are used as guides in the
process. Actually, though, Heim’s theory i1s 6-dimensional, and a 4-di-
mensional version is at best an approximation. The results are present—
ed nevertheless, since nothing else is available at the moment.

The basis of the derivation is an analogy between the gravitational
field equations and Maxwell’s equations. The two systems have differ—
ent metrics, so that one coordinate transformation leaves Maxwell’s e—
quations invariant, while another leaves the gravitational equations in-
variant. Both systems of equations are represented by tensor diver—
gences, and the idea is to find a linear combination of gravitational
and electromagnetic tensor components which remain invariant under a
combined coordinate transformation in Minkowski space.

1. Maxwell’s Equations

Maxwell’s equations 1 vacuum may be written in the following sym-—
metric form:

V-J& E = ¢ K P, (Ala)
VXJ?GE=-—%§E\[TOH (Alb)
V-JhoH =0 (Alc)
Vx JHgH = [Hole + ¢ 5[ E (Ald)
, |
JEoMo = T (Ale)
In addition, one has to satisfy the equation of continuity,
.. 9P,
V-j. + =0 , (A2)

¢ Jt
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and the Lorentz force density in vacuum,
f. =p (E + vxXu,H) . (A3)
The index e in these equations stands for "electrical”.

The system of equations (Al1)-(A3) may be represented by the diver—
gences of an antisymmetric tensor Tr Y, a source sf , the dual tensor

*T*V and the dual source qf: :

e

0 JWH, -JWGH, -iJgE,

-JGH, 0 [lKH, -iJg&E,

[ieH, -JigH, 0  -iJ&E,
1 J€y E, i\]'a_,:,'E!'r i\j?oEz O

TAY
T! (A4)

S: [\]To jex’ m jey’ \,Fo jez’ icm pe] (AS)

0 -iJ§E, iJ&E, JiH,
i[GE, 0 -iJ&E,  JiGH,

xThY - A6

© T |-idmE iJmE o JmE, |
_me _mHy _\ITOHZ 0

g = [0, 0,0, 0] . (A7)

The 6 equations (Ala)-(A3) are obtained from the following operations
on the tensors and sources of Eqgs. (A4)—-(A7):

g%Tf" = s leads to Egs. (Ala) and (Ald)  (A8a)
ai: TR = g leads to Egs. (Alb) and (Alc)  (A8b)
5—3? s:: = ( leads to Eq. (A2) (A8c¢)
£ = T'sY leads to Eq. (A3) . (A8d)
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Greek indices run from 1 to 4, Latin ones from 1 to 3. The summa—
tion convention is used throughout, except where stated. The 4 values

of x:: are,

xl = X, x2 =Y, X3 = Z, X: = ICt . (A9)
Maxwell’s equations are valid in Minkowski space, which Heim denotes

by R, (Heim 1989). Its coordinates are given in Eq. (A9). The equa—
tions above are invariant under a Lorentz transformation, i.e. if the

transformed coordinates are given by

— M

X, = AyvX, (A10)
and vice versa,

H . A—l i—v

Ke = Bepvie » (All)

then Aew and A;:w are elements of the following 4 x 4 matrices:

- ¥V .
Y 0 0 izy Y. 0 0 -ily
0 1 0 0 -1 0 1 0 0
A = AT =
© 0 O 1 0 ¢ 0 0 1 0 (Al2)
-igy. 0 0 v izy. 0 0 vy
with
1
= 77 (Al3)
] - L
N 02

for a translation in the x-direction. The matrix products are
A;IAE=AEA;1 =1 (unit matrix), or

Ad = AL AL =85 . (A14)

A eAV eur“ “eAv T8Y

el

. . A
Heim denotes the transformation matrix A, by A .
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2. The Gravitational Equations

The gravitational equations are similar in form to Maxwell’s equations.
The gravitational vector oI, where I' is the gravitational field, corre—
sponds to the electric displacement vector in vacuum, D =g,E. The
magnetic induction in vacuum, B =p H, is replaced by the vector B,
where | is the gravitational mesofield, whose relation to I' 1s similar
to the relation of H to E. According to Heim, the gravitational equa—
tions are valid in R,,, which differs from R_, in that x,= ot and not
Ict. @ 1s an as yet undetermined velocity, which obeys the relation,

® = -1 . (A15)

Jap

This results in a change of sign on the right-hand side of the gravita—
tional equation whose equivalent is Eq. (Alb). Finally, B differs from
B in having as source the field mass density p_-p_, while B is
source—free due to the non—existence of magnetic monopoles.

With these changes and analogies the gravitational equations in Heim's
symmetric notation become (v. Ludwiger 1975),

VIGT = oB p, (Al6a)
er&r=mat\ﬁ3’u (A16b)
V-JIBir = JBoPy=Pmo (Al6c)
Vx|Bp = FJm+Earr (A16d)

Here the subscript m stands for "mass”, p_ 1is the total mass density,
P.o 18 the particle mass density, and j_ is the mass current density.
Added to this is the continuity equation

. dp,
V'Jm -+ _E)_T = (0 . (A17)

The force density will be derived from the tensor relations.

The tensors and sources whose divergences lead to Eqgs. (Al16a)—(A17)
are
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0 JBur, —-\NBmn, -Jar,

™ = | B o, 0 NBro - ol

g JBu, -JBn, 0 -Ja T,
J_(_frx mry mrz 0

Sg = [\[ﬁjmx’ \]_Bljmy’ \Iﬁjmz’ o\p Pm] '

0 —mrz mry \I—ﬁ“’x

JoTI 0 —ml"x ﬁ“

*Tl'l'v — z y
: _mry \'_a‘-rx 0 \[Ellz

~JBr, -IBr, —IBn, 0

q: = [Or O! O& _(D\J—E(pm_pm{])] y
The subscript g stands for "gravitational”.

The relations leading to the gravitational equations above are

d_ THY S;‘ leads to Eqgs. (Al6a) and (A16d)

Vg
axg
a;iv*rr;" — q: leads to Eqgs. (Al16b) and (A16c¢)
g
Jd B _
s =0 leads to Eq. (Al17) .
ax: i

(A18)

(A19)

(A20)

(A21)

(A22a)

(A22b)

(A22¢)

In analogy to Eq. (A8d) the force density is derived from the relation

vy
f]s B Tjg g >
resulting in the expression

f, = P (-T + vXBp) .

(A22d)

(A23)
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In the equations above,

X; = X, xZ = Y, 3{3 = Z, X4 = Wt . (A24)

=H _ v

X, = Agwxg (A25a)
H -1 =v

X, = Agwxg : (A25b)

Y O 0 %Y‘* 14 0 0 *% 1
0 1 0 0 ~1 0 1 0 0
Ay = A = A26
A% 0 0 v
RS Y, sY% 0 0 v,
and
Y, = (A27a)
1 + =
\ ®
-1 -1 |
AginAgpy = AgnBapy = 9, (A27b)

_ A
Heim denotes the Ag——matrix by A,.

3. The Unified Field Tensor T""

According to Heim, neither R_, nor R,, are true representations of re—
ality. Instead, R_, and R,, are to be combined into a common space

R, in which (a) x*=ict, and (b) the field equations are invariant with
respect to the combined transformation B = A, A, The corresponding

AV i . i v V : . .
tensor, T" , 1s a linear combination of T: and T: with coefficients to

be determined (v. Ludwiger 1981, p. 113). Since x*=ict the new equa-
tions are again valid in Minkowski space, as are Maxwell’s equations,

Y . . . . ‘ ;
so that T: need not be changed, 1.e. its coefficient in the combined

tensor may be set equal to unity. The ansatz for T' and s then be—
comes,
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™ = T." + b, T, (A28a)
s = s+ puys, (A28b)
x' = x' (cf. Eq. (A9)) . (A28c)

Parantheses around some of the lower indices indicate that the summa-—
tion convention is suspended.

The new equations should again be of the form

o 1]
= S Az
dx, (AZ9a)
T W
aax" = q, (A29b)
<
K
Q%; = 0 (A29¢)
ox,
f =1"s" . (A294)
The new transformation matrices B = AEAg and B! = A'g'l A;l are
B;w = AeulAglv (A30a)
_ _1 _
Bp{r - Agprexv ' (A30Db)

Equation (A29a) can be shown to be invariant under the combined
transformation B.

Next, Eqs. (A28a) and (A28b) are substituted into Eq. (A29a), giving

0 1l

RY
__3__(T:"+ b Ty ) = Se + PouySy - (A31)

ox”

€

(kV)

T”V is a solution of Eq. (A8a), eliminating the first terms on the left—
and right-hand sides of Eq. (A31) and leaving the relation

d —hv _ p
Puv) 357 T8 T Pans (A32)
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The coordinates xfe, j=1,2,3, are the same as x ., so that according to

Eq' (Azza)!

Only the terms in p=4 and v =4 require adjustment. Writing out iIn
full the 4 equations resulting from Eq. (A32) for u=1, 2, 3, and 4,
and using Eqs. (A18) and (A19), gives

n=1: \]TS[?;Z I aaty] —~ b14‘£: Ty = \]—jm (A34a)
BB E T,
BT e
N = 4: Jﬁ[b“%% + bﬂ%gi + by, %%] = p,oBp, . (A34d)

Comparing Eqgs. (A34a) — (A34c) with Eq. (A16d) shows that

~1C
b14 — b24 — b34 — "03 . (A35)
T"" must be an antisymmetric tensor, implying the relation
1C
b41 = b42 — b43 — o (A36)
Using these values of bm” Eq. (A34d) becomes
=V.{oT = po|Bp, - (A37)

When this is compared with Eq. (Al6a) the last undetermined coeffi—
cient, p,, i1s seen to be

Py = & - (A38)

With all coefficients known, the results may now be substituted into
Eqgs. (A28a) and (A28b) from which the unified field tensors are de-—
rived. The result is best expressed in terms of the following quantities
introduced by Heim:
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G = (¢ E+ Siar (A39a)
C=(pH+(Bnp (A39b)
i = (Pode + B (A39¢)
p = [P, + B Py - (A39d)
In terms of the quantities above the unified field tensor and its source
are, |
0 C, ---Cy -1G_
" -C, O C, —-iGy
T =
Cy - C, 0 -1G, (A40)
G, iGy 1G, 0
s" = [ip Jy 3y, dcp] - (A41)
The dual tensor and its source are
0 -iG, iGy C,
> iG, 0 -iG, C,
—iGy 1G_ 0 C, (A42)
-C, —--~Cy -C, 0
¢ =[0,0,0, —oBpP,-Pu0] - (A43)

The unified field equations are obtained by substituting Egs. (A40) —
(A43) into Egs. (A29a) and (A29b). The result is

V.-G =cp (Ad442a)
R (A44b)
V-C = oJB(Pp~Puo) (Ad4c)
vxC =j+ 196G (Ad4d)

C ot
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The equation of continuity, derived from Eq. (A29c), 1s

vq'.l.........._:"‘ A4;

Finally, the force density is obtained from Eq. (A29d),

f =cpG + jxC . (A46)

Two of the 3 constants, o, B, and ® still remain to be determined.
Consider first Eq. (A44a). Written out in full it becomes

V-J&GE + SVaV-T =c [l p, + c\B Py - (A47)

In the absence of both electric charges and electric fields the equation
reduces to

lav.r=J(Bp, (A48)
Oor
V-T = é—pm (A49)

by use of Eq. (Al5). Since I' is the gravitational field, Eq. (A49) must
correspond to the well-known expression for the divergence of that
field,

V.T = 4ryp,_ , (A50)

from which it 1s evident that

_ 1
a = any (AS51)

Next, consider Eq. (A46). Again, writing 1t out in full results in the
expression,

2

f = p.E + épmf’ +j.xB + Bj_xp+ cPgp E +
02 - - ' . .
+ ooy p I+ [ By G xH + joxp) (A52)

The second term on the right must be the usual force density p_ I’ due
to the gravitational field. This implies that c/w=1 or

W = C . (A53)
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The meaning of the 5th and 6th terms m Eq. (A52) is not clear. The
coefficient c\f Be, = 10°1Y is small, so that this term may have escaped

detection, but c[ap_ (with ®=c) is of order 10'’. Since such a strong
coupling of the charge density to the gravitational field is completely
at variance with observation, it must be assumed that this particular
cross term is zero. This may be explained by assuming that I' never
directly acts on charges. The last two terms in Eq. (A52) represent
interactions between mass current density and magnetic field on the
one hand, and between electric current density and the gravitational
mesofield on the other. The coefficient \]Buo is of order 107'® and
hence extremely small, so that the contribution of these terms to the
total force would usually be of negligible magnitude. Only a very sen-—
sitive experiment could detect the terms, provided they exist at all.

Finally, with use of Eq. (A15) P is given by

p = —1—5 : (A54)
ocC

Using Eq. (A53) the 4 quantities of Eq. (A39) become

G=JgE+Jal (A552)
C=JpH+ BH (A55b)
j = (Pode + B, (AS55¢)
p=JHoP. +NBP, - (A55d)

The full set of unified field equations, written out in the usual notation
and including the 3 small cross terms of Eq. (A52), is

1

V-E = € P (A56a)

V-T = épm (AS6b)

Vx[E+ gr}=—u(}§*[ﬂ+ —Eu] (A56¢)
N 0 t N\ Ho

V-H =0 (A56d)

V- =cp,— Pno) (A56€)
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4 T "

. B . o o
Vx i H + |2 ul = LA -—-[E+ --r] AS6

f=pE+p I'+jxB+Pj Xp+ c\]BEO'me -+

+ By (j, XxH + joXR) . (A56g)

The fact that Eq. (A56c) does not reduce to Eq. (A16b) in the absence
of electromagnetic fields is a consequence of the fact that Eq. (A56)

exists in Minkowski space, R_,, with x*=ict, whereas Eq. (A16b) exists
in R , with x* = ct (W = ¢).

Appendix B

1. The Field Equations

In the 4—dimensional unified field theory derived in Appendix A anti—
gravitational phenomena are described by Eqgs. (A56c¢) and (AS56f). In
the first of these, u may be neglected relative to the much stronger
impressed magnetic field p H=B_. In the second equation j_ is zero
because no mass currents are present. Finally, j, may be disregarded
because it is already incorporated into B_ . With these simplifications

the field equations become,

oP _ _9B
VXK+ant —-at B
VxP-—eD%If 0.

The equations above are valid in vacuum and neglect the earth’s di-
electric properties. The fields in Eq. (B1) are,

K = E +

I
\ :
(B2)

P=H -+

t

o
€9
B
Hg

\
where



- 279 -

E = electric field
H = magnetic field in vacuum
B, = magnetic field inside the core
I’ = induced gravitational field
B = mesofield
€, = vacuum permittivity (&€,= 8.854 X 10712 farad/m)
1L, = vacuum permeability (B, =4 X 1077 henry/m) (B3)
0. = permittivity of space to gravity
(o0 =1/4 T y=1.19 x 10° s’kg/m°)
Y = gravitational constant (Y= 6.67 x 107! m’/s%kg)
B = 1/oc® (B =9.34x107°" m/kg)

¢ = velocity of light (c =3 x 10® m/s) .

In addition, the fields satisfy the relations (cf. Eqgs. (A56a), (A56b),
(A56d), and A(56e)),

V-K =0
V-P = c(py— Py ) (B4)
V-B, =0 .

In Eq. (B4) P = Pm, is the mass density of the gravitational field pro—
duced by the mass m, of the craft (Heim 1989). The total field mass,
m —m,, is approximately equal to 1.39 X IO"ZSm%(r—rO)/r rokg if r>r,
where r, is the equivalent radius of m, The density of such a small
field mass can safely be disregarded on the right-hand side of Eg.

(B4).

2. The Hertz Vector

Equations (B1) and (B4) have the well-known form of Maxwell’s
equations if — dB,/dt is regarded as a source term in Eq. (B1). Methods
of solving the equations have been known for a long time. The proce—

dure described below follows Stratton (1941).

The fields may be expressed in terms of the Hertz vector function II.
If Il satisfies the equation

v. °II _ 1
VxVxIT - V{( H)+u080-a?__i],_{;B0’ (B5)

then K and P are obtained from the pair of relations,
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_NOV)(Q_I:I_

= dt

(B6)
9°I1 | 1
_é_t‘é"‘ (ugeo = '(':"'2') .

P

V(V-II) - n,¢,

This can be verified by substituting Eq. (B6) into Egs. (B1) and (B4)
(with p_~p_ =0), making use of Eq. (B5) and the last line of Eq.

(B4).

b/

X

Fig. B1. Coordinate system used for calculating the fields.
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In rectangular coordinates the following vector identity is valid:
VxVxIT = V(V-II) - V1T . (B7)

Use of this identity transforms Eq. (B5) into the relation below,
(B8)

Equation (B8) is solved in the coordinate system of Fig. B1. i, j, and
k in that figure are unit vectors along the rectangular axes x, y, and
z, respectively. Similarly, i,, i,, and 1; are unit vectors in spherical
coordinates, r is the radius vector to the point at which IT is calcu—
lated, and p is the radius vector to a field point of B,(p,t) inside the
core. The shape of the latter may be either cylindrical or toroidal ac—
cording to Fig. 1 of the main text. In either case the field lines of B,
are circles around the z—axis in a direction tangential to the outer
boundary surfaces of the core. A tangential magnetic field B is discon-
tinuous across a boundary. In the case of a toroidal magnet the field
is zero outside. If the core is cylindrical, as in Fig. 1a, the field out—
side is reduced by the factor W,/ relative to its value inside (U=
permeability of the core material). Since U,/ is a very small quantity

of order 107°-107, B, will be assumed to vanish outside the core in
the cylindrical case, too.

Neglecting end effects in the case of the cylindrical core the primary
magnetic field B, in the arrangements of Figs. la and 1b is,

_pI(t) jecosg - isin @ .
B,(p,t) = e oSiny inside the core

(B9)
=0 outside .

Note that jcos@ —ising =i, (cf. Fig. Bl). The current, I(t), equals the
current through a single wire multiplied by the number of wires in a
loop of Fig. la, or by the number of windings around the toroidal core

of Fig. 1b.

All derivations will be carried out for both sine and cosine currents.
The subscripts s (sine) and c (cosine) denote the corresponding fields.
It is convenient to express B, in terms of its two Fourier components,
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B, (p.t) = Bo(p)_zl_i(eimt _ e*-iu)t)
_ 1 ¢ it ~101
By (p.) = Bo(p) 7 (e + e7) (B10)

- MIO jCOS(p — iSiIl(P
ByP) = 7 0 sin

3

where I, is the maximum number of ampere turns.

A solution of Eq. (B8) is obtained, first of all, for the single Fourier
component B (p)exp(-iwt). From this the expression of Il for sine and
cosine currents can easily be derived. Keeping only the exp(—i®t) —term
in Eq. (B10) a single rectangular component of II, II_, satisfies the e—
quation, ,
0Tl ~iot
2 1 m _ c
A% § S EREY =~ B,.,(P) - (B11)

The solution of Eq. (B11) 1is

(B12)

(k should not be confused with the unit vector k). The complete vector
function now becomes,

—imt ikir - pl

=& € d’p . B13
tl 4nuOI Bo(P) Ir — pl P (B13)

When r>p the function under the integral can be expanded,

iklr — pl 00
T oeT - ik ), (2n+ 1) P(Q i) j,(kp) b, (k) ,  (Bl4)
- o

where €2 1is a unit vector along p and P_ is a Legendre polynomial.

The spherical Bessel functions j and hfll) are given below,

R

jn(x) J 2x Jn+ 1/2 (X)

. (B15)
T +4(
\'ﬂHn_l_l/Z (X) .

(1
h, “(x)
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In the equation above J and H are Bessel and Hankel functions, re—
spectively, of half integral order.

It will be assumed that r is always large compared to the dimensions
of the magnet, so that r>>p for all r and p. It is then sufficiently ac—
curate to retain only the first two terms in the expansion of Eq. (B14),

iklr - pl
Tr__ pl = ik{jo(kp)hﬁ”(kr) + 3 |cosOcosy +

+ sin@sinycos(® — ¢)]j;(kp) h{Pkn) } (B16)

Equation (B16) leads to the dipole approximation of K and P. After
inserting Eq. (B16) into Eq. (B13) and expressing B, (p) in terms of
Eq. (B10) the Hertz vector becomes,

2r
I - . : .

1 = ik802 50 e‘"“‘“{hgl)(kr)”JO(kP)PdeW!;(JCOS(P — isin@Q)d¢ +
T

2K
+ 300kn) [ [5,(kp)pdpdy _{[[cosecosw +

+ sin@sinycos(® — @)] (Jcos@ — iSiﬂ(P)d(P} : (B17)

The first line of Eq. (B17) gives no contribution to IT because the 1n—
tegral over ¢ is zero. In the second line the cos0 cosy —term vanishes
for the same reason. In the remaining integral j,(kp) may be approxi—

mated by 1
hi(kp) = 'jkp ; (B18)

because kp is, in general, a very small quantity. This reduces the
Hertz vector of Eq. (B17) to the expression,

I - .
M= ik? —% e o h(ll)(kr)sul@”pzdpsin\ud\p><

2N
xjcos(d)-—-(p)(jCOS(P — 1sin@)de
0

I ' s
1 160 2 50 e h(il)(kf) 51“9'3'27'~'J f pdpsinydy . (B19)
TC
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The double integral in Eq. (B19), multiplied by 2=, is just the volume
V of the core, irrespective of its shape. Hence, the final result,

o = ik?- IOV jad
1612 Mo

e h{V(kr)sin 6 i, , (B20)

applies to both configurations of Fig. 1. The direction of II is parallel
to B
0°

The expressions for II_ and Il are now obtained by repeating the pro—

cedure for the second Fourler component, B,(p)exp(imt), or by taking
complex conjugates, and combining results according to Eq. (B10). The

IT-vectors for sine and cosine currents then become,

. LV pT1 k .
1, = i, 161c2n—0 [;—- sin{®t — kr) + —cos(mt—kr)] sin 6
(B21)
LV 11 k . *-
I = i, — — cos(mwt — kr) — = sin(wt—kr) | sin© .
° J16n?Ho [r2 ( g ]

3. The Fields Generated by a Stationary Magnet

The field vectors K and P are derived from Eq. (B6). The curl in the
first line of that equation, applied to a function i,F; in spherical coor-

dinates, 1S
13

: _ 1 J o
VXxiF, =i —in® 30 (sin@F;) — 1, < 5 (rF,) . (B22)

The divergence, V-II, in the second line of Eq. (B6) i1s zero because
I1 is independent of azimuthal angle ®. The result of substituting the
Hertz vectors of Eq. (B21) into Eq. (B6) is

Holg VO 1 : .
K, = - e Ho{ (2i,cos® + i,sinB)cos(wt—kr) —
-15-(21 6 0 (ot — kr) 1k2 in 0 cos(wt kr}
- 2 ;COS0 + 125111 ) sin — - 1= sin O cos — Kkr)
(B23)

Vo
K. = M(I’I;nz ::){-1—(211(:059 + i,8in0)sin(wt — kr) +

2
+ = (2i1cos 6 + i,sin 0)cos(wt — kr) — 12k sin O sin(wt — kr) }

r’
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, IV
P = 16 2:;0{ sin(Wt — kr) + l?('c:o:.:ts((x)t--—l':r) }sine
T
1V (B24)
Pc = 16 2::0{ cos(wt —kr) ~— -l-(-sm(u)t—kr)}sinﬁ :
T

These equations show that K and P are perpendicular to each other.

4. Coordinate Transformations

The effect of counterrotating magnets and the integral over the earth
are best evaluated in rectangular coordinates. For this purpose the unit
vectors in spherical coordinates, i, 1,, and i, are expressed in terms of
i, j, and k. The transformation formulas and the inverse transformations

arc,

i, = isinBcos® + jsinOsin® + kcos6

icosBcos® + jcosOsin® — ksin (B25)

1]
¥
i

—isin® + jcosP

i = ilsinecostb + i2c059003¢ - i3sin<IJ
j = i;sin@sin® + i,cos0sin® + i,cos®P (B26)
k = ilcose — izsine .

Transforming the unit vectors in Eqgs. (B23) and (B24) by means of
Eq. (B25) leads to the following expressions for the fields:

I. Vo
K = oo H{ [3131119(;05900@(1) + 33sinBcosBsin® +
i 167> Mo
+ K(3cos’8 — 1,)] cos(t — Kkr) 2 [3isinecosecos® +

2
+ 3jsinfOcosOsinP -+ k (3cos*0 — 1_)] sin{wt — kr) —

2
li_ [isinecosﬁcos@ + jsmBcosBsinP — ksinze] cos(wt — kr) }

(B27)
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K _ HolgVo p
’ 1672 Mo

+ k(3cos’0 — 1)] sin(wt — kr) + 2 [3131119(:039::03(13 +

+ 3jsin@cosBsin® + k(3cos20 — 1) | cos(et - kr) —

{ [31511190039005@ + 3jsin®cosOsinP +

2
kli [i sinBcosBcosP + jsinOcosOsin® — ksinzB] sin(t — kr) }

2 LV pr k -
P, =k"— > — sin(wt — kr) + = cos(mt — kr) } (—i1smnOsin® + jsinB cosP)
1672 Ho * 2
(B28)
2 1oV ug1 K ..
P =k { -;2- cos(wt — kr) — = sin(t — kr) } (—1sinB sin® + jsinO cosP)

1612 Mo

Equation (10) of the main text is obtained by solving Eq. (B2) for T,
putting E =0, replacing K by K. of Eq. (B27), and keeping only the
vertical components of K. The vertical components are the coefficients
of the unit vector k.

Making use of the relations,

X=rsmmbcos®, y=rsinBsin®, z=rcosh, r= \] X% +y° + 2 (B29)
allows the fields to be fully expressed in rectangular coordinates,

MUI Vo y
K = 3ixz + 3jyz + k(32z*-1%) | cos(wt —kr) —
s = T en? Mo{ | Jy ( )] cos )

k[, _ ;5.1 .
4 [3”{3 + 3jyz + k(3z"—r )]sm(mt—kr) -

2
_ lixz + jyz + k(22-P] cos(o)t——kr)} (B30a)
I
I, Vo
K, = u;};nz 50{;-15 [3ixz + 3)jyz + k(3zz—r2)]sin((0t-—kr) +

+ I%—[Bixz + 3jyz + k(3z2-r2)]cos(0)t—kr) —

2
— -1% [ixz + jyz + k(zz—rz)] Sil‘l(fﬂt—kr)} _ (B30b)

I
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— Z.h_v___'i 1 t—kr) + -ls-cos wt - kr 1 i

Ps = k T2 o 3 sin{ ) 2 ( )}( 1y + JX) (B31a)
.V k .

P = K¥0° 2il ot — kr) — = sin(wt —-kr) f (-iy + jx) . B31

T uo{r3°°s‘ )T ey vio. @

5. The Rotating Fields

The time dependence of the vertical field components is largely elimi-
nated by employing two counterrotating magnets and adding their fields
together. In order to determine the effect of rotation on the fields as
seen by a stationary observer the fields of Eqs. (B30) and (B31) are
attached to two coordinate systems rotating about the y-—axis in op—
posite directions. Figure B2 shows the stationary and rotating coordi—
nate systems of magnets 1 and 2. The angular frequency of rotation,
®, is the same for both and is also equal to the current frequency.
Certain phase relations must be observed between all components of
the system. The phases are so chosen that most terms in the vertical

component of K=K +K_ become stationary.

Yy k\"
-_Uﬁ-__z”\{mt“
£\ k

Fig. B2. Stationary and counterrotating coordinates.
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The sense of rotation shown in Fig. B2 is anticlockwise in (1) and
clockwise in (2). The first magnet rotates as cosot, the second as
cos(—mwt — t/2) = - sinwt. The coordinate transformations corresponding to
these rotations are

Ist Magnet
X" = Xcosmt — zsinot i’ = icosot — ksin mt
y =y =1 (B32)
z' = xsin®t + zcos mt k' = isinwt + kcosmt

2nd Magnet
X" = —xsinwt + zcosmt i" = —isinwt + kcosmt
yl'l —_ y jll —_ j (B33)
Z' = —XCcosmt — ZSsin mt k"= —icosmt — ksinot .

The distance r remains invariant under the transformations above.

x!2 + yr2 + Zfz — an + y"2 + ZHZ — x2 + yZ + z2 — r2 ] (B34)

In addition, the currents vary as sinot through the first magnet and as
cos ot through the second.

All coordinates and unit vectors in K, Eq. (B30a), and P, Eq. (B31a),
are now replaced by primed quantities. Likewise, all coordinates and
unit vectors of K, and P_ in Eqgs. (B30b) and (B31b) are replaced by
doubly primed symbols. In this way the fields are made to rotate with
the singly and doubly primed coordinate axes. The fields observed in
the stationary system are obtained by replacing all singly and doubly
primed quantities by their respective expressions on the right-hand sides
of Egs. (B32) and (B33). Finally, sine and cosine fields are added
vectorially to give,
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K

K, + K,
P=PS+PC.

(B35)

The final result of these operations is

\%
K = _ Moo 2"’.&‘_{-15 (i[3xzcoskr + (3x*—P)sinet—kr)] +
16n* Ho'r

+ 3jy[xsin(2(;0t—kr) + zcoskr] + k[3xzsin(2mt—kr) +

+ (322 - P)coskr]) + ;1‘1;-(: [3xzsinkr + (3x% - ?)cos(2mt —kr)| +
+ 3jy[xcos(20)t—-kr) + zsinkr] + k[3xzcos(2(t)t—kr) +

+ 322 —P)sinkr]) - lr%z(, [xzcoskr + (x% - P)sinRoot - kn)] +

+ jy[xsin(’lmt——kr) + zcoskr] +

+ k [xzsin(th — kr) + (22 — rz)coskr]) } (B36)

L,V u f1 . . ,
P= k-2 P12 iysinkr — J[xsmkr — zcos(Zot —kr)| —
1672 ILLo{r3 ( |

— kycos(Zcot—-kr)) + %(—iycoskr + j[xcoskr -

— zsin(2(0t—kr)] + kysin(ZOJt-kr)])} , (B37)

The field lines of K in the y—z—plane are plotted to scale in Fig. 8 for
a wave number k=2.73 X 10" m™' and somewhat schematically for k =

1.57 x 10°°m™! in Fig. 9. Circular field lines, separating antigravitation—
al from gravitational zones, occur whenever the condition

1 + krtankr = 0 (B38)

is satisfied. The first S values of kr meeting this requirement are

ke = 2.798386. 6.121250, 9.317866, 12.486454, 15.644128 .

The separation between (kr) ,; and (kr). approaches ® with increasing
n.
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The electric, magnetic, and gravitational fields, including the mesofield,
are obtained from Eqgs. (B36) and (B37) by use of Eq. (B2),

E=K

H=P (B = pH
K
u:\l%ap

The mesofield p acts only on moving masses, on which it exerts a
Lorentz—type force (cf. Eq. (A56g)),

(B39)

FILl = fmvXxyu, (B40)

where v is the velocity of mass m and P is given in Eq. (B3).

The vertical component of the gravitational field, I',, is derived directly
from Eqgs. (B39) and (B36). Transforming x, y, and z back into
spherical coordinates by means of Eq. (B29) I', becomes,

€9 BoloVO p [ 1 - -
. o 2 l-lo{ri“ [3smecos cos @ sin(2wt —kr)
+ (3cos’@ — l)coskr] + -—kz [3 sin@ cos O cosPcos(2wt —kr) +

2 KT . .
+ (3cos“0 — l)sinkr] - [schosBcos(Dsm(th—kr) —

~ sinzesinkr]} . (B41)

As this equation shows, the vertical field is not independent of time.
However, the time—dependent terms do not contribute to the integral
over the earth because cos®, integrated from 0 to 2w, gives zero. On
the other hand, the factors (3;1:;2 — rz), occurring in the x—component of
K, do not integrate to zero. The x—component of T containing these
terms will be denoted by I',. It provides an oscillatory gravitational
force in a direction perpendicular to the axis of rotation and is given
by the expression, |
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o RolpVO P 11 20 02 _ 1)si
r = & 2 u—o{;i(iism Ocos"® — 1)sin(2wt — kr) +

+ —l-;— (3sin’0 cos’® — 1)cos(2wt —kr) —
I

2
— Er' (sin29 cos’® — 1)sin(2mt — kr) } . (B42)

It should be possible to eliminate this sideway oscillation by mounting
a second pair of counterrotating magnets turned through 180° relative

to the first.

A strong electric field E is induced in addition to the relatively weak
gravitational field. E, according to Eq. (B39), is given by Eq. (B36)
and contains both stationary terms and terms oscillating with an angu-—
lar frequency 2. The electric field gives rise to the phenomena men—

tioned in the Conclusions of the main text.

Of particular interest from a theoretical point of view is the observa—
tion of dark rings surrounding a UFQO, as seen by W. A. Webb
through his polaroid sunglasses (Roush 1968). Assuming the rings to be
caused by the Faraday-rotation of the plane of polarized light due to
the Zeeman effect, W. K. Allan has estimated the magnetic field
strength required to explain the observation. His calculations are re-

ported by Ch. A. Maney (1965).

According to the present theory, the antigravitational field is accompa-—
nied by a strong electric field and not by a strong magnetic field.
However, the same rotation of the plane of polarization may be
achieved by an electric field via the Stark effect. This phenomenon is
known as the Kerr effect. Since the basic form of the electric field is
known from Eq. (B36) the Kerr effect can be calculated exactly. This
would yield valuable information about the electric field strength, and,

by use of Eq. (B39), about the strength of I.

6. The Antigravitational Force

If p_ is the average mass density of the earth, then the gravitational
force F acting on the magnets is equal to the following integral of T,
extended over the volume of the earth:

D+ h | 2n
F=—kp, | dr | d(cos8)]T(r-0,0nd0 (B43)
h (cosB) . 0

where
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D = diameter of the earth (D =1.2757 x 10" m)

h = height of magnet above the earth’s surface

_ h(D+h)+r1°
(€08Ohmin = SR MF

I" in this equation is taken from Eq. (B41). As mentioned above, the

z .
time—-dependent terms in I’ do not contribute to the integral. Perform-

ing the integration of Eq. (B43) results in the expression,

_ CPm | €0 HolgV H
F=-k==Jo 2 iy gD
(B44)
_ 1 . .
g(k,h) = 3{-D(D+2h)[smkh + smk(D+h)] -

(R + h)
+ EE [h coskh — (D + h) cosk(D+h)] -

- % [sinkh - sink(@+h] } .

The g(k,h)-function is plotted in Figs. 10 and 11 of the main text.
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